Genomic data and ecological niche modeling reveal an unusually slow rate of molecular evolution in the Cretaceous Eupteleaceae
Living fossils are evidence of long-term sustained ecological success. However, whether living fossils have little molecular changes remains poorly known, particularly in plants. Here, we have introduced a novel method that integrates phylogenomic, comparative genomic, and ecological niche modeling analyses to investigate the rate of molecular evolution of Eupteleaceae, a Cretaceous relict angiosperm family endemic to East Asia. We assembled a high-quality chromosome-level nuclear genome, and the chloroplast and mitochondrial genomes of a member of Eupteleaceae (Euptelea pleiosperma). Our results show that Eupteleaceae is most basal in Ranunculales, the earliest-diverging order in eudicots, and shares an ancient whole-genome duplication event with the other Ranunculales. We document that Eupteleaceae has the slowest rate of molecular changes in the observed angiosperms. The unusually low rate of molecular evolution of Eupteleaceae across all three independent inherited genomes and genes within each of the three genomes is in association with its conserved genome architecture, ancestral woody habit, and conserved niche requirements. Our findings reveal the evolution and adaptation of living fossil plants through large-scale environmental change and also provide new insights into early eudicot diversification.
This is a preview of subscription content, log in via an institution to check access.
Access this article
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
Instant access to the full article PDF.
Rent this article via DeepDyve
Similar content being viewed by others
Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms)
Article Open access 18 March 2015
Phylogenomics and the rise of the angiosperms
Article Open access 24 April 2024
The evolutionary history of Fouquieriaceae (Ericales): biogeography, growth habit, habitat colonization, and chromosome evolution
Article 12 September 2022
Availability of data
All raw sequencing reads generated in this study have been deposited in the NCBI Sequence Read Archive (https://www.ncbi.nlm.nlh.gov/sra) with Bioproject accession number PRJNA980104. The genome assembly sequences and gene annotations have been deposited in GenBank under the accession JASUTR000000000. The sequence alignments used to generate phylogenetic trees have been deposited in the FigShare database (https://doi.org/10.6084/m9.figshare.23295485).
References
- APG IV. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181, 1–20. ArticleGoogle Scholar
- Axelrod, D.I. (1998). The Eocene Thunder Mountain flora of central Idaho. Berkeley: University of California Press. Google Scholar
- Bailey, T.L., Johnson, J., Grant, C.E., and Noble, W.S. (2015). The MEME suite. Nucleic Acids Res 43, W39–W49. ArticleCASPubMedPubMed CentralGoogle Scholar
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19, 455–477. ArticleCASPubMedPubMed CentralGoogle Scholar
- Breton, G., Danyluk, J., Charron, J.B., and Sarhan, F. (2003). Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant Physiol 132, 64–74. ArticleCASPubMedPubMed CentralGoogle Scholar
- Brown, J.L., Bennett, J.R., and French, C.M. (2017). SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5, e4095. ArticlePubMedPubMed CentralGoogle Scholar
- Brown, J.L., Hill, D.J., Dolan, A.M., Carnaval, A.C., and Haywood, A.M. (2018). PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci Data 5, 180254. ArticlePubMedPubMed CentralGoogle Scholar
- Cantarel, B.L., Korf, I., Robb, S.M.C., Parra, G., Ross, E., Moore, B., Holt, C., Sánchez Alvarado, A., and Yandell, M. (2008). MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18, 188–196. ArticleCASPubMedPubMed CentralGoogle Scholar
- Cao, Y.N., Comes, H.P., Sakaguchi, S., Chen, L.Y., and Qiu, Y.X. (2016). Evolution of East Asia’s Arcto-Tertiary relict Euptelea (Eupteleaceae) shaped by Late Neogene vicariance and Quaternary climate change. BMC Evol Biol 16, 66. ArticlePubMedPubMed CentralGoogle Scholar
- Cao, Y.N., Zhu, S.S., Chen, J., Comes, H.P., Wang, I.J., Chen, L.T., Sakaguchi, S., and Qiu, Y.H. (2020). Genomic insights into historical population dynamics, local adaptation, and climate change vulnerability of the East Asian Tertiary relict Euptelea (Eupteleaceae). Evol Appl 13, 2038–2055. ArticlePubMedPubMed CentralGoogle Scholar
- Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al. (2013). Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10, 563–569. ArticleCASPubMedGoogle Scholar
- Condamine, F.L., Silvestro, D., Koppelhus, E.B., and Antonelli, A. (2020). The rise of angiosperms pushed conifers to decline during global cooling. Proc Natl Acad Sci USA 117, 28867–28875. ArticleCASPubMedPubMed CentralGoogle Scholar
- De Bie, T., Cristianini, N., Demuth, J.P., and Hahn, M.W. (2006). CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271. ArticleCASPubMedGoogle Scholar
- De La Torre, A.R., Li, Z., Van de Peer, Y., and Ingvarsson, P.K. (2017). Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol Biol Evol 34, 1363–1377. ArticleCASPubMedPubMed CentralGoogle Scholar
- Deng, J., Lewis, P.A., Greggio, E., Sluch, E., Beilina, A., and Cookson, M.R. (2008). Structure of the ROC domain from the Parkinson’s disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proc Natl Acad Sci USA 105, 1499–1504. ArticleCASPubMedPubMed CentralGoogle Scholar
- Doniger, J., Landsman, D., Gonda, M.A., and Wistow, G. (1992). The product of unr, the highly conserved gene upstream of N-ras, contains multiple repeats similar to the cold-shock domain (CSD), a putative DNA-binding motif. New Biol 4, 389–395. CASPubMedGoogle Scholar
- Du, B., Zhang, M., Sun, B., Li, A., Zhang, J., Yan, D., Xie, S., and Wu, J. (2021). An exceptionally well-preserved herbaceous eudicot from the Early Cretaceous (late Aptian-early Albian) of Northwest China. Natl Sci Rev 8, nwab084. ArticlePubMedPubMed CentralGoogle Scholar
- Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S., Machol, I., Lander, E.S., Aiden, A.P., et al. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95. ArticleCASPubMedPubMed CentralGoogle Scholar
- Durand, N.C., Shamim, M.S., Machol, I., Rao, S.S.P., Huntley, M.H., Lander, E.S., and Aiden, E.L. (2016). Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3, 95–98. ArticleCASPubMedPubMed CentralGoogle Scholar
- Emms, D.M., and Kelly, S. (2015). OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16, 157. ArticlePubMedPubMed CentralGoogle Scholar
- Filiault, D.L., Ballerini, E.S., Mandáková, T., Aköz, G., Derieg, N.J., Schmutz, J., Jenkins, J., Grimwood, J., Shu, S., Hayes, R.D., et al. (2018). The Aquilegia genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic chromosome with a unique history. eLife 7, 503. ArticleGoogle Scholar
- Formenti, G., Theissinger, K., Fernandes, C., Bista, I., Bombarely, A., Bleidorn, C., Ciofi, C., Crottini, A., Godoy, J.A., Höglund, J., et al. (2022). The era of reference genomes in conservation genomics. Trends Ecol Evol 37, 197–202. ArticleCASPubMedGoogle Scholar
- Friis, E.M., Mendes, M.M., and Pedersen, K.R. (2018). Paisia, an Early Cretaceous eudicot angiosperm flower with pantoporate pollen from Portugal. Grana 57, 1–15. ArticleGoogle Scholar
- Gemmell, N.J., Rutherford, K., Prost, S., Tollis, M., Winter, D., Macey, J.R., Adelson, D. L., Suh, A., Bertozzi, T., Grau, J.H., et al. (2020). The tuatara genome reveals ancient features of amniote evolution. Nature 584, 403–409. ArticleCASPubMedPubMed CentralGoogle Scholar
- Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29, 644–652. ArticleCASPubMedPubMed CentralGoogle Scholar
- Guo, L., Winzer, T., Yang, X., Li, Y., Ning, Z., He, Z., Teodor, R., Lu, Y., Bowser, T.A., Graham, I.A., et al. (2018). The opium poppy genome and morphinan production. Science 362, 343–347. ArticleCASPubMedGoogle Scholar
- Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Smith, R.K., Jr., H.L.I., Maiti, R., Ronning, C.M., Rusch, D.B., Town, C.D., et al. (2003). Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31, 5654–5666. ArticleCASPubMedPubMed CentralGoogle Scholar
- Hay, J.M., Subramanian, S., Millar, C.D., Mohandesan, E., and Lambert, D.M. (2008). Rapid molecular evolution in a living fossil. Trends Genet 24, 106–109. ArticleCASPubMedGoogle Scholar
- Heslop-Harrison, J.S., Schwarzacher, T., and Liu, Q. (2023). Polyploidy: its consequences and enabling role in plant diversification and evolution. Ann Bot 131, 1–10. ArticleCASPubMedGoogle Scholar
- Hoot, S.B., Magallón, S., and Crane, P.R. (1999). Phylogeny of basal eudicots based on three molecular data sets: atpB, rbcL, and 18s nuclear ribosomal DNA sequences. Ann Mo Bot Gard 86, 1–32. ArticleGoogle Scholar
- Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240. ArticleCASPubMedPubMed CentralGoogle Scholar
- Katoh, K., Kuma, K., Toh, H., and Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33, 511–518. ArticleCASPubMedPubMed CentralGoogle Scholar
- Kent, W.J. (2002). BLAT—the BLAST-like alignment tool. Genome Res 12, 656–664. CASPubMedPubMed CentralGoogle Scholar
- Kubaláková, M., Valárik, M., Bartoš, J., Vrána, J., Cíhalíková, J., Molnár-Láng, M., and Dolezel, J. (2003). Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46, 893–905. ArticlePubMedGoogle Scholar
- Lanfear, R., Kokko, H., and Eyre-Walker, A. (2014). Population size and the rate of evolution. Trends Ecol Evol 29, 33–41. ArticlePubMedGoogle Scholar
- Li, H.T., Yi, T.S., Gao, L.M., Ma, P.F., Zhang, T., Yang, J.B., Gitzendanner, M.A., Fritsch, P.W., Cai, J., Luo, Y., et al. (2019). Origin of angiosperms and the puzzle of the Jurassic gap. Nat Plants 5, 461–470. ArticlePubMedGoogle Scholar
- Lidgard, S., and Love, A.C. (2018). Rethinking living fossils. Bioscience 68, 760–770. ArticlePubMedPubMed CentralGoogle Scholar
- Lin, T., Xu, X., Du, H., Fan, X., Chen, Q., Hai, C., Zhou, Z., Su, X., Kou, L., Gao, Q., et al. (2022). Extensive sequence divergence between the reference genomes of Taraxacum kok-saghyz and Taraxacum mongolicum. Sci China Life Sci 65, 515–528. ArticleCASPubMedGoogle Scholar
- Liu, P.L., Zhang, X., Mao, J.F., Hong, Y.M., Zhang, R.G., E, Y., Nie, S., Jia, K., Jiang, C. K., He, J., et al. (2020). The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements. Genome Biol 21, 291. ArticleCASPubMedPubMed CentralGoogle Scholar
- Liu, X., Liu, Y., Huang, P., Ma, Y., Qing, Z., Tang, Q., Cao, H., Cheng, P., Zheng, Y., Yuan, Z., et al. (2017). The genome of medicinal plant macleaya cordata provides new insights into benzylisoquinoline alkaloids metabolism. Mol Plant 10, 975–989. ArticleCASPubMedGoogle Scholar
- Liu, Y., Wang, B., Shu, S., Li, Z., Song, C., Liu, D., Niu, Y., Liu, J., Zhang, J., Liu, H., et al. (2021). Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids. Nat Commun 12, 3276. ArticleCASPubMedPubMed CentralGoogle Scholar
- Lloyd, G.T., Davis, K.E., Pisani, D., Tarver, J.E., Ruta, M., Sakamoto, M., Hone, D.W.E., Jennings, R., and Benton, M.J. (2008). Dinosaurs and the cretaceous terrestrial revolution. Proc R Soc B 275, 2483–2490. ArticlePubMedPubMed CentralGoogle Scholar
- Ma, Y., Dai, X., Xu, Y., Luo, W., Zheng, X., Zeng, D., Pan, Y., Lin, X., Liu, H., Zhang, D., et al. (2015). COLD1 confers chilling tolerance in rice. Cell 160, 1209–1221. ArticleCASPubMedGoogle Scholar
- Maddison, W.P., and Maddison, D.R. (2019). Mesquite: a modular system for evolutionary analysis. Version 3.81.
- Manchester, S.R., Chen, Z.D., Lu, A.M., and Uemura, K. (2009). Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. J Syst Evol 47, 1–42. ArticleGoogle Scholar
- Mendes, M.M., Grimm, G.W., Pais, J., and Friis, E.M. (2014). Fossil Kajanthus lusitanicus gen. et sp. nov. from Portugal: floral evidence for Early Cretaceous Lardizabalaceae (Ranunculales, basal eudicot). Grana 53, 283–301. ArticleGoogle Scholar
- Ou, S., Su, W., Liao, Y., Chougule, K., Agda, J.R.A., Hellinga, A.J., Lugo, C.S.B., Elliott, T.A., Ware, D., Peterson, T., et al. (2019). Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol 20, 275. ArticleCASPubMedPubMed CentralGoogle Scholar
- Paez, S., Kraus, R.H.S., Shapiro, B., Gilbert, M.T.P., Jarvis, E.D., Al-Ajli, F.O., Ceballos, G., Crawford, A.J., Fedrigo, O., Johnson, R.N., et al. (2022). Reference genomes for conservation. Science 377, 364–366. ArticleCASPubMedGoogle Scholar
- Pan, K.Y., Lu, A.M., and Wen, J. (1991). Chromosome number and development of gametophytes in Euptelea pleiospermum (Eupteleaceae) (in Chinese). Acta Phytotax Sin 29, 439–444. Google Scholar
- Parra, G., Bradnam, K., and Korf, I. (2007). CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067. ArticleCASPubMedGoogle Scholar
- Pessoa, E.M., Ribeiro, A.C., and Jud, N.A. (2021). A eudicot leaf from the Lower Cretaceous (Aptian, Araripe Basin) Crato Konservat-Lagerstätte. Am J Bot 108, 2055–2065. ArticlePubMedGoogle Scholar
- Phillips, S.J., Anderson, R.P., and Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecol Model 190, 231–259. ArticleGoogle Scholar
- Qin, H., Yang, Y., Dong, S., He, Q., Jia, Y., Zhao, L., Yu, S., Liu, H., Liu, B., Yan, Y., et al. (2017). Threatened species list of China’s higher plants. Biodivers Sci 25, 696–744. ArticleGoogle Scholar
- Ramírez-Barahona, S., Sauquet, H., and Magallón, S. (2020). The delayed and geographically heterogeneous diversification of flowering plant families. Nat Ecol Evol 4, 1232–1238. ArticlePubMedGoogle Scholar
- Sanderson, M.J. (2003). r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302. ArticleCASPubMedGoogle Scholar
- Shi, T., and Chen, J. (2020). A reappraisal of the phylogenetic placement of the Aquilegia whole-genome duplication. Genome Biol 21, 295. ArticlePubMedPubMed CentralGoogle Scholar
- Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212. ArticlePubMedGoogle Scholar
- Smith, S.A., and O’Meara, B.C. (2012). treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690. ArticleCASPubMedGoogle Scholar
- Soltis, D.E., Soltis, P.S., Chase, M.W., Mort, M.E., Albach, D.C., Zanis, M., Savolainen, V., Hahn, W.H., Hoot, S.B., Fay, M.F., et al. (2000). Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical J Linn Soc 133, 381–461. ArticleGoogle Scholar
- Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. ArticleCASPubMedPubMed CentralGoogle Scholar
- Stigall, A.L. (2012). Using ecological niche modelling to evaluate niche stability in deep time. J Biogeogr 39, 772–781. ArticleGoogle Scholar
- Sun, Y., Deng, T., Zhang, A., Moore, M.J., Landis, J.B., Lin, N., Zhang, H., Zhang, X., Huang, J., Zhang, X., et al. (2020). Genome sequencing of the endangered Kingdoniauniflora (Circaeasteraceae, Ranunculales) reveals potential mechanisms of evolutionary specialization. iScience 23, 101124. ArticleCASPubMedPubMed CentralGoogle Scholar
- Sun, Y., Moore, M.J., Lin, N., Adelalu, K.F., Meng, A., Jian, S., Yang, L., Li, J., and Wang, H. (2017). Complete plastome sequencing of both living species of Circaeasteraceae (Ranunculales) reveals unusual rearrangements and the loss of the ndh gene family. BMC Genomics 18, 592. ArticlePubMedPubMed CentralGoogle Scholar
- Suyama, M., Torrents, D., and Bork, P. (2006). PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34, W609–W612. ArticleCASPubMedPubMed CentralGoogle Scholar
- Swets, J.A. (1988). Measuring the accuracy of diagnostic systems. Science 240, 1285–1293. ArticleCASPubMedGoogle Scholar
- Tang, C.Q., Matsui, T., Ohashi, H., Dong, Y.F., Momohara, A., Herrando-Moraira, S., Qian, S., Yang, Y., Ohsawa, M., Luu, H.T., et al. (2018). Identifying long-term stable refugia for relict plant species in East Asia. Nat Commun 9, 4488. ArticlePubMedPubMed CentralGoogle Scholar
- Tang, Y.C., Lu, A.M., and Chen, Z.D. (1997). The living fossil plants—rescue, conservation and studies in urgent demand (in Chinese). Chin Biodivers 5, 307–308. Google Scholar
- Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E.S., Fischer, A., Bock, R., and Greiner, S. (2017). GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45, W6–W11. ArticleCASPubMedPubMed CentralGoogle Scholar
- Wang, W., Lu, A.M., Ren, Y., Endress, M.E., and Chen, Z.D. (2009). Phylogeny and classification of Ranunculales: evidence from four molecular loci and morphological data. Perspect Plant Ecol 11, 81–110. ArticleGoogle Scholar
- Wang, Y., Tang, H., DeBarry, J.D., Tan, X., Li, J., Wang, X., Lee, T., Jin, H., Marler, B., Guo, H., et al. (2012). MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40, e49. ArticleCASPubMedPubMed CentralGoogle Scholar
- Weber, J.A., Park, S.G., Luria, V., Jeon, S., Kim, H.M., Jeon, Y., Bhak, Y., Jun, J.H., Kim, S.W., Hong, W.H., et al. (2020). The whale shark genome reveals how genomic and physiological properties scale with body size. Proc Natl Acad Sci USA 117, 20662–20671. ArticleCASPubMedPubMed CentralGoogle Scholar
- Wei, X.Z., He, D., Jiang, M., Huang, H., Yang, J., and Jie, Y. (2009). Characteristics of riparian rare plant communities on the Shennongjia Mountains, Central China (in Chinese). J Wuhan Bot Res 27, 607–616. Google Scholar
- Werth, A.J., and Shear, W.A. (2014). The evolutionary truth about living fossils. Am Sci 102, 434–443. ArticleGoogle Scholar
- Worberg, A., Quandt, D., Barniske, A.M., Löhne, C., Hilu, K.W., and Borsch, T. (2007). Phylogeny of basal eudicots: Insights from non-coding and rapidly evolving DNA. Org Divers Evol 7, 55–77. ArticleGoogle Scholar
- Wu, S., Han, B., and Jiao, Y. (2020). Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Mol Plant 13, 59–71. ArticleCASPubMedGoogle Scholar
- Wu, Z.Y., Lu, A.M., Tang, Y.C., Chen, Z.D., and Li, D.Z. (2003). The Families and Genera of Angiosperms in China (in Chinese). Beijing: Science Press. Google Scholar
- Yang, X., Gao, S., Guo, L., Wang, B., Jia, Y., Zhou, J., Che, Y., Jia, P., Lin, J., Xu, T., et al. (2021). Three chromosome-scale Papaver genomes reveal punctuated patch-work evolution of the morphinan and noscapine biosynthesis pathway. Nat Commun 12, 6030. ArticleCASPubMedPubMed CentralGoogle Scholar
- Yang, X.Q., Kushwaha, S.P.S., Saran, S., Xu, J., and Roy, P.S. (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng 51, 83–87. ArticleCASGoogle Scholar
- Yang, Z., and Rannala, B. (2006). Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol 23, 212–226. ArticleCASPubMedGoogle Scholar
- Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24, 1586–1591. ArticleCASPubMedGoogle Scholar
- Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS-J Integrative Biol 16, 284–287. ArticleCASGoogle Scholar
- Zhang, H., Wang, Y., Deng, C., Zhao, S., Zhang, P., Feng, J., Huang, W., Kang, S., Qian, Q., Xiong, G., et al. (2022). High-quality genome assembly of Huazhan and Tianfeng, the parents of an elite rice hybrid Tian-you-hua-zhan. Sci China Life Sci 65, 398–411. ArticleCASPubMedGoogle Scholar
Acknowledgement
This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31030000), the National Natural Science Foundation of China (32170210, 32170238, 31770231, 31770233), the Science, Technology, and Innovation Commission of Shenzhen Municipality of China (RCYX20200714114538196), K.C. Wong Education Foundation (GJTD-2020-05) and Innovation Program of Chinese Academy of Agricultural Sciences.
Author information
- Contributed equally to this work
Authors and Affiliations
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China Kun-Li Xiang, Lian Lian, Huan-Wen Peng, Hong-Yan Shan, Gui-Xia Xu & Wei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China Kun-Li Xiang, Wen-Chuang He, Dan Peng, Xiao-Ni Zhang & Zhi-Qiang Wu
- China National Botanical Garden, Beijing, 100093, China Kun-Li Xiang, Lian Lian, Huan-Wen Peng, Hong-Yan Shan, Gui-Xia Xu & Wei Wang
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China Sheng-Dan Wu
- University of Chinese Academy of Sciences, Beijing, 100049, China Huan-Wen Peng & Wei Wang
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China Hong-Lei Li
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China Jia-Yu Xue
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China Yang Liu
- Kun-Li Xiang